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Introduction

• Discuss the relation between boundary effect and “turbulence,
singularities, anomalies” in the 0 viscosity limit.
• Use the notion of dissipative solutions as introduced by A. Majda, P.L.
Lions and R. Di Perna.
• Show that the convergence/non convergence to the solution of the Euler
equation is an issue independent of the appearance of singularities.
• Therefore I will consider smooth initial data u0(x) generating smooth
solutions uν(x , t) and u(x , t) of the Navier Stokes (with boundary
conditions) in a domain Ω ⊂ Rn with n = 2 or n = 3 and of the Euler
equation with the impermeability condition for t ∈ [0,T ] .
The problem

uν(x , t) = weak lim
ν→0

uν(x , t) = (or) 6= u(x , t)

seems to be related to all the issues of turbulence (Lax, Tartar).
• To support this remark I want to show that the discussion is similar
when the Navier-Stokes limit is replaced by the Boltzmann limit (joint
work with F. Golse and L.Paillard).
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The Navier-Stokes Equations

∂tuν + (uν · ∇)uν − µ∗∆uν +∇pν = 0

∇ · uν =
∑

1≤i≤d
∂xi (uν)i = 0 , uν · ∇uν =

∑
1≤i≤d

(uν)i∂xi uν .

Called incompressible because of the relation ∇ · u = 0 .
But are also equations for fluctuations of mass, density and velocity
around some reference state.
In particular ε the Mach number is the ratio between the fluctuation of
velocity and the sound speed.

Claude Bardos Boundary effect and Turbulence.



The Navier-Stokes Equations

u = εũ θ = 1 + εθ̃ , ρ = 1 + ερ̃

∇x ·ũ = 0 , ∂t ũ + (ũ ·∇x)ũ +∇x p̃ = µ∗∆ũ ,

Density and temperature fluctuations ρ̃ , θ̃ are passive scalars:

ρ̃+ θ̃ = 0 , Boussinesq approximation
d+2

2 (∂t θ̃ + ũ ·∇x θ̃) = κ∗∆θ̃ Fourier Law.

Phenomenological derivation or consequence of the Boltzmann equation
Hilbert 6th problem.
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ν in Navier-Stokes is not the real viscosity of the fluid, but is the inverse of
the Reynolds number, a rescaled viscosity adapted to the size of the
fluctuations of the velocity is given by the formula:

Re =
UL

µ∗

In all practical applications Re, is very large, therefore ν is very small.
Bicycle 102, Industrial fluids (pipes, ships...) 104, Wings of airplanes 106,
Space Shuttle 108, Weather Forcast, Oceanography 1010, Astrophysic
1012. It would be natural to study the limit ν → 0 in the Navier-Stokes
equations or even to put ν = 0 and then consider the Euler equations...

Claude Bardos Boundary effect and Turbulence.



With convenient ( below given) boundary conditions:

d

dt

∫
Ω

|u(x , t)|2

2
+ ν

∫
Ω
|∇u(x , t)|2dx = O(ν)→ 0

Therefore (modulo subsequences) uν → u in weakL∞((0,T ); L2(Ω))
• However in presence of boundary things are not so simple but very useful
to consider.
• Intuition is that in general, in the presence of boundary, convergence
does hold: Existence of wake and d’Alembert Paradox.

Figure: Euler, D’Alembert, Navier and Stokes
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Statistical theory or weak convergence for Turbulence

< ., . > statistical average '' uν weak limit ,

(〈uν ⊗ uν〉 − 〈uν〉 ⊗ 〈uν〉) Reynolds stresses tensor ,

0 ≤ lim
ν→0

(uν − uν)⊗ (uν − uν) = lim
ν→0

(uν ⊗ uν − uν ⊗ uν) Reynolds s.t. .

w(k) =
1

(2π)n

∫
Rn

e iky 〈uν(x +
y

2
))⊗ uν(x − y

2
)dy〉 Turbulence (spectra)

Wν(x , k , t) =
1

(2π)n

∫
Rn

e iky (uν(x +

√
ν

2
)⊗ uν(x −

√
νy

2
)

−u(x)⊗ u(x))dy . Wigner Transform

W ν(x , t, k) = lim
ν→0

Wν(x , k , t). Wigner Measure
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Remarks

• My sources for statistical theory (Peter Constantin, Uriel Frisch)
• Law is in average with a forcing term.
• In the statistical theory hypothesis of isotropy and homogeneity appear.
• One of the consequence is the Kolmogorov law:

ε = ν〈|∇uν |2〉 '
ν

T

∫ T

0

∫
Ω
|∇uν |2dxdt Kolmogorov hypothesis ,

〈|u(x + r)− u(x)|2〉
1
2 ' (ν〈|∇u|2〉)

2
3 |r |

1
3 Kolmogorov law .
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More remarks

• As seen below a deterministic version of ε > 0 rules out strong
convergence to the smooth solution
• A deterministic version of the 1/3 law implies convergence to the
smooth solution and consistent with the conservation of energy
Constantin, E, Titi and als..
In the present case a look for weak convergence (not strong) and
dissipation of energy!
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More remarks

• In the weak formulation all the objects are (x , t) local (integral can be
done after localisation)
• The Wigner transform is not positive but the Wigner measure is a local
positive object.
• The Kolmogorov law rules out weak convergence so it should not be
uniform in ν. On the other hand it may appear in the spectra when there
is a non trivial Wigner measure which may behave like

E (k) = Trace( lim
ν→0

Wν(x , k, t).|k |−2) ' ( lim
ν→0

ν

∫
|∇uν |2〉)

2
3 |k |−

5
3 )
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With Boundary conditions the following non trivial
equivalent criteria define what Turbulence is NOT

• Convergence to a “ up to the boundary” weak solution” ⇒ No non
trivial Reynolds stresses tensor.
• Convergence weakly to the regular solution
• Strong convergence to this solution.
• No anomalous dissipation of energy.
• No production of the vorticity at the physical boundary.
• No production of vorticity at a boundary layer of size ν
The Prandlt equations of the boundary layer are not valid.
There is a non trivial Reynolds stress tensor related to a
Kolmogorov-Heisenberg spectra by a non trivial Wigner Measure.
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A-priori estimates

A “general family” of boundary conditions containing the “classical”:

uν · ~n = 0 and ν(∂~nuν + (C (x)uν)τ + λ(ν)uν = 0 on ∂Ω (1)

with λ(ν, x) ≥ 0 and C (x) ∈ C (Rn,Rn) (2)

uν · ~n = 0⇒ ((∇⊥uν) · ~n)τ = (C (x)uν)τ

Hence with uν · ~n = 0 are of the type (1):

Dirichlet with λ(ν) =∞ ,

Dirichlet-Neumann with λ(ν) = C (x) = 0 ,

Fourier with C (x)(uν) = (∇⊥uν)⇒ ν(S(uν)~n)τ + λ(ν)uν = 0 ,

With λ(x) = 0 No stresses (S(uν)~n)τ = 0 ,

With vorticity ν((∇(uν)−∇⊥(uν))~n)τ + λ(ν)uν = 0 .
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Energy estimates

1

2

∫
Ω
|uν(x ,T )|2dx +

∫ T

0
(ν

∫
Ω
|∇uν |2dx − ν

∫ T

0

∫
∂Ω

(∂~nuν) · uνdσ = 0 ,

−ν
∫
∂Ω

(∂~nuν) · uνdσ = −ν
∫
∂Ω

(C (x)uν , uν)dσ + λ(ν)

∫
∂Ω
|uν(x , t)|2dσ ,

|ν
∫
∂Ω

(C (x)uν , uν)dσ| ≤ Cν(

∫
Ω
|∇uν |2dx)

1
2 (

∫
Ω
|uν |2dx)

1
2 ,

1

2

∫
Ω
|uν(x ,T )|2dx ≤ 1

2
(

∫
Ω
|uν(x , 0)|2dx)eCνT ,

1

2

∫
|uν(x ,T )|2dx +

∫ T

0
(ν

∫
Ω
|∇uν |2dx +

∫
∂Ω
λ(ν)|uν(x , t)|2dσ)dt =

1

2

∫
|uν(x , 0)|2dx + o(ν) .
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Dissipative Solutions and Viscosity Solutions

Di Perna (1979), Dafermos (1979) Majda- Di Perna ( 1987) P.L. Lions
(1996), with boundary CB Titi (2007).

S(w) =
1

2
(∇w + (∇w)t) , ∂tw + (w · ∇w) = E (x , t) = E (w)

∂tu +∇ · (u ⊗ u) +∇p = 0 ,∇u = 0 , u · ~n = 0 with u smooth ,

∂tw + w · ∇w +∇q = E (w) , ∇ · w = 0 .

1

2

∫
Ω
|u(x , t)− w(x , t)|2 ≤

∫ t

0

∫
|(E (x , s), u(x , s)− w(x , s))|dxds

+

∫ t

0

∫
Ω
|(u(x , s)− w(x , s))S(w)(u(x , s)− w(x , s))|dxds

+
1

2

∫
Ω
|u(x , 0)− w(x , 0)|2dx . (3)

A dissipative solution is as a divergence free tangent to the boundary
vector field which for any test function w as introduced above satisfies the
relation (3).
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Hence the stability of dissipative solutions with respect to smooth
solutions and, in particular, the fact that whenever exists a smooth
solution u(x , t) any dissipative solution which satisfies w(., 0) = u(., 0)
coincides with u for all time.
However, it is important to notice that to obtain this property one needs
to include in the class of test functions w vector fields that may have non
zero tangential component on the boundary.
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Viscosity limit

∂tuν + uν · ∇uν − ν∆uν +∇pν = 0 , u = weak− lim
ν→0

u ,

∂tw + w · ∇w +∇q = E (w) ,

1

2

d

dt
|uν(x , t)− w(x , t)|2L2(Ω) + ν|∇uν(t)|2L2(Ω)

≤ |(S(w) : (uν − w)⊗ (uν − w))|+ |(E (w), uν − w)|
+ν(∇uν ,∇w)L2(Ω) + ν(∂~nuν , uν − w)L2(∂Ω)) ,

1

2

∫
Ω
|u(x , t)− w(x , t)|2 ≤

∫ t

0

∫
|(E (x , s), u(x , s)− w(x , s))|dxds

+

∫ t

0

∫
Ω
|(u(x , s)− w(x , s)S(w)uν(x , s)− w(x , s))|dxds

+
1

2

∫
Ω
|u(x , 0)− w(x , 0)|2dx + lim

ν→0
ν

∫ t

0

∫
∂Ω

(∂~nuν , uν − w)dσdt
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With no boundary convergence (modulo subsequence) to a
dissipative solution is always true.

If there exists a smooth solution u(x , t) on [0,T ] with the same initial
data then u(x , t) = u(x , t) .

1

2

∫
|u(x , 0)|2dx =

1

2

∫
|u(x , t)|2dx ≤ 1

2
lim
ν→0

∫
|uν(x , t)|2dx ≤ 1

2

∫
|u(x , 0)|2dx ⇒ lim

3→0

∫ t

0
ν|∇uν(x , t)|2dxdt = 0

• In the absence of boundary and with the existence of a smooth solution
of the Euler equations there is no anomalous energy dissipation, no
w.Reynolds stresses tensor.
Proof Peter Constantin Periodic Boundary Conditions and Kato in the
whole space.
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About wilde solutions of DeLellis and Székelyhidi

Even without boundary in the absence of regular solutions (loss of
regularity for Euler solution or wild initial data) u is still a dissipative, but
may be not a weak solution (Reynolds stresses tensor 6= 0 and may not be
the unique solution.
In particular when u0 is the initial data of a wilde solution in the sense of
DeLellis and Székelyhidi.
However this is not the situation considered below.
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Direct results with boundary

Theorem In the presence of a smooth Euler solution.
• Weak convergence to a dissipative solution.
• Convergence to a weak solution (up to the boundary) or with
C 0,α , α > 1/3 , .
• It is the solution.
• The sum of the kinetic and friction energy go to 0.

lim
ν→0

1

T

∫ T

0
(ν

∫
Ω
|∇uν(x , t)|2dx +

∫
∂Ω
λ(x)|uν(x , t)|2dx)dt → 0 .
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Conversely

Theorem In the presence of a smooth Euler solution Convergence to a
dissipative solution:

1 In any case, in particular Dirichlet (ν
∂uν
∂~n

)τ → 0 in D′(∂Ω×]0,T [) ,

2 For Fourier-Navier λ(ν)uν → 0 : in D′(∂Ω×]0,T [)→ 0 ,

3 λ(ν)→ 0 or λ(ν) bounded and

∫
∂Ω×]0,T [

λ(ν)|uν(x , t)|2dσdt → 0 ,

4 In any case Kato lim
ν→0

ν

∫ T

0

∫
Ω∩{d(x ,∂Ω)<ν}

|∇uν(x , t)|2dxdt → 0 .

Claude Bardos Boundary effect and Turbulence.



No turbulence in the presence of physical boundary

In the presence of a smooth solution u for Euler equation on [0,T ] with
the same initial data the following facts are equivalents
• Weak convergence to a “ up to the boundary” weak solution ⇒ No
w.Reynold stresses tensor.
• uν ⇀ u . Weak convergence to the solution of the Euler equations.
• ∀0 < t < T 1

2

∫
Ω |w . lim uν(x , t)|2dx = 1

2

∫
Ω |u0(x)|2dx . Energy

conservation.
• uν → u . Strong convergence
• limν→0 ν

∂uν
∂~n = 0 in D′(Ω) . No anomalous vorticity production at the

boundary.
• limν→0

∫ T
0 (
∫

Ω ν|∇uν(x , t)|2dx + λ(ν)
∫
∂Ω |uν |

2dσ)dt = 0. No
anomalous energy dissipation.
• limν→0

∫ T
0

∫
d(x ,∂Ω)<ν |∇uν(x , t)|2dx = 0. No anomalous “order ν”

boundary layer energy dissipation.

Claude Bardos Boundary effect and Turbulence.



Remarks

• The existence of a Prandlt boundary layer (and in particular the analytic
configuration considered by Asano, Caflish and Sanmartino (1998)) implies
Kato hypothesis. Converse may not be true.
• In the case of slip boundary condition (of the type λ(ν)→ 0 and with
more regularity constraints many results concerning strong (in higher
norms ) convergence have already been obtained (Yudovich (1963), JL
Lions (1969), Bardos (1972), Clopeau-Mikelic-Robert (1998), Beirao da
Veiga and Crispo (2010), Xiao and Xin (2007)).
• If one of the above equivalent fact is not satisfied one would expect
generation of turbulence.
The limit is not a solution of the Euler equations, there is no energy
conservation, there is anomalous energy dissipation, the weak Reynolds
stresses tensor is not 0 . etc...
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Figure: Kato: Prandlt..Boundary layer, Kelvin Helmholtz, Von Karman vortex
street.
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Proof of Kato argument

For any w ∈ rmT (∂Ω×]0,T [) introduce a sequence wν(s, τ, t) (in
geodesic coordinates near ∂Ω ) with

support(wν) ⊂ Ων×]0,T [ ,∇ · wν = 0, and on ∂Ω×]0,T [ wν = w ,

|∇τ,twν |L∞ ≤ C , |∂swν |L∞ ≤
C

ν
.

From

(0,wν) = ((∂tuν +∇(uν ⊗ uν)−∆uν +∇pν)wν) =

−(uν , ∂twν) + ((uν ⊗ uν) : ∇wν) + ν(∇uν ,∇wν)− (ν∂~nuνw)L2(∂Ω×]0,T [) = 0

⇒ |(ν∂~nuνw)L2(∂Ω×]0,T [)| = |((uν ⊗ uν) : ∇wν)|+ o(ν)

Poincaré estimate and a priori estimate

⇒ |((uν ⊗ uν) : ∇wν)| ≤ C

∫ T

0

∫
Ων

ν|∇uν |2dxdt → 0 .
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Boltzmann→Euler limit with boundary effect

To consolidate the fact that Kato approach may be the correct point of
view and that the boundary condition

ν(∂~nuν + (C (x)uν))τ + λ(ν)uν = 0

(which contains Dirichlet and Neumann) is the good one, one can argue
that the introduction of a microscopic derivation based on the Boltzmann
equation leads to the same results.
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Fε(x , v , t) ≥ 0: Density distribution of particles which at the point x ∈ Ω
and the time t do have the velocity v ∈ Rn

v ) of the (rescaled in time)
Boltzmann equation:

ε∂tFε + v · ∇xFε =
1

ε1+q
B(Fε,Fε) Quadratic operator in Rn

v

with Maxwell Boundary Condition for v · ~n < 0 in term of v · ~n > 0 .

F−ε (x , v)=(1−α(ε))F +
ε (x , v∗)+α(ε)M(v)

√
2π

∫
v ·~n<0

|v · ~n|F +
ε (x , v)dv ,

0 ≤ α(ε) ≤ 1 , v∗ = v − 2(v · ~n)~n = R(v) ,

M(v) =
1

(2π)
n
2

e−
|v|2

2 , Λ(φ) =
√

2π

∫
Rn
v

(v · ~n)+φ(v)M(v)dv ,

Λ(1) = 1(proba!) F−ε (x , v) = (1− α(ε))F +
ε (x ,R(v)) + α(ε)Λ(

Fε
M

) ,

Fε(x , v , 0) = M(v)(1 + εg(v)) lim
ε→0

uε = lim
ε→0

1

ε

∫
Rn
v

~vF (ε(x , v , t)dv .
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• For q = 0 , uε = 1
ε

∫
Rn
v

vFεdv converges to a Leray solution of
Navier-Stokes with the boundary condition:

u · ~n = 0 and ν((∇u +∇tu) · n)τ + λ(ν)u = 0

λ(ν) =
1√
2π

lim
ε→0

α(ε)

ε
Dirichlet⇔ lim

ε→0

α(ε)

ε
=∞ .

• Aoki, Inamuro, Onishi (1979) Stationary solution linearized regime and
Hilbert expansion;
• Masmoudi-Saint Raymond (2003) for Mischler solutions towards Leray
solutions.
• General formal proof C.B., Golse, Paillard (2011).
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Entropy Dissipation versus Energy Balance

H(F |G ) =

∫
Ω×Rn

v

(F log(
F

G
)− F + G )dxdv Relative entropy ,

1

ε2

d

dt
H(Fε(t)|M) +

1

εq+4

∫
Ω

∫
R3
v

DE (Fε)dvdv1dσ +
1

ε3

∫
∂Ω

DG = 0

DE(F )(v , v1, σ) =
1

4
(F ′F ′1 − FF1) log(F ′F ′1 − FF1)b(|v − v1|, σ) En. dissipation ,

DG(F ) =

∫
R3
v

v · ~nH(Fε|M)dσdv The Darrozes-Guiraud local entropy .
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h(z) = (1 + z) log(1 + z)− z)

√
2πDG =

∫
R3
v

v · ~nH(Fε|M)dσdv =

√
2π

∫
R3
v

v · ~nH(M(1 + εgε)|M)dv =
√

2π

∫
R3
v

v · ~nM(v)h(1 + εgε)dv

=
√

2π

∫
R3
v

(v · ~n)+M(v)h(εgε(v))dv −
√

2π

∫
R3
v

(v · ~n)+M(v)h(εgε(Rv))dv

= Λ(h(εgε))− Λ(h[(1− α(ε))εgε + α(ε)Λ(εgε)])

≥ α(ε)

[
Λ(h(εgε(v)))− h(Λ(εgε(v))))

]
≥ 0
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Hence the final entropy estimate:

1

ε2

d

dt
H(Fε(t)|M) +

1

εq+4

∫
Ω

∫
R3
v

DE (Fε)dvdv1dσ

+
1

ε2

α(ε)

ε

1√
2π

∫
∂Ω

[Λ(h(εgε(v)))− h(Λ(εgε(v))))]dσ ≤ 0 .
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Compare formally to energy with gε = ε−1(Fε −M)/M → u · v

1

2

d

dt

∫
Ω
|uν(x , t)|2dx + ν

∫
Ω
|∇uν |2dx +

∫
∂Ω
λ(ν)|uν(x , t)|2dσ → 0

1

ε2

d

dt
H(Fε(t)|M)→ 1

2

d

dt

∫
Ω
|u(x , t)|2dx

1

εq+4

∫
Ω

∫
R3
v

DE (Fε)dvdv1dσ ' εqν
∫

Ω
|∇u +∇⊥u|2dx

1

ε2

∫
∂Ω

[Λ(h(εgε(v)))− h(Λ(εgε(v))))]dσ '
∫
∂Ω
|uε(x , t)|2dσ

α(ε)

ε

1√
2π
' λ(εqν)
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Entropic convergence to a regular Euler solution ⇒

1

εq+4

∫
Ω

∫
R3
v

DE (Fε)dvdv1dσ

+
1

ε2

α(ε)

ε

1√
2π

∫
∂Ω

[Λ(h(εgε(v)))− h(Λ(εgε(v))))]dσ → 0

Theorem Sufficient condition for the convergence to Euler:

lim
ε→0

α(ε)

ε
= 0 or

α(ε)

ε
≤ C <∞ and

1

ε2

∫
∂Ω×]0,T [

[Λ(h(εgε(v)))− h(Λ(εgε(v))))]dσdt → 0

Conjecture (Kato!)

1

εq+4

∫ T

0

∫
Ω∩{d(x ,∂Ω)≤εq)}

∫
R3
v

DE (Fε)dvdv1dσdt→ 0 .
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Some details in proof

Proof uses Laure Saint Raymond argument. Simpler assuming local
conservation of moment. Focus on the terms coming from the boundary.
Introduce a divergence free tangent to the boundary smooth vector fields
w(x , t).

1

ε2
H(M(1,εu0,1)|M(1,εw ,1)) =

1

2

∫
Ω
|uin − w(x , 0)|2dx

1

ε2
H(Fε|M(1,εw ,1))(t)=

1

ε2
H(Fε|M)(t)+

∫
Ω×R3

v

(
w 2

2
− v

ε
w)Fε(t, x , v)dxdv

1

2ε2

d

dt

∫
Ω

∫
Fε(t, x , v)(ε2w 2 − 2εv · w)dxdv

=

∫
Ω

∫
∂tw · (w − 1

ε
v)Fε(t, x , v)dxdv

+

∫
Ω

(
w 2

2
∂t

∫
Fε(t, x , v)dv − w

ε
·
∫
∂tFε(t, x , v)vdv

)
dx .
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For ∂t
∫

Fε(t, x , v)dv and ∂t
∫

Fε(t, x , v)vdv use the local conservation
laws : In the first term appears the conservation of mass:∫

∂Ω

∫
Rd
v

v · ~nFε(t, x , v)dvdσ = 0 :

∫
Ω

1

2
w 2∂t

∫
Fε(t, x , v)dx = −1

ε

∫
Ω

1

2
w 2∇x ·

∫
vFε(t, x , v)vdvdx

=
1

ε

∫
Ω

∫
(v · ∇xw) · wFε(t, x , v)dvdx

−1

ε

∫
∂Ω

dσ
1

2
w 2

∫
Rd
v

v · ~nFε(t, x , v)dv =

=

∫
Ω

∫
1

ε
(v · ∇xw) · wFε(t, x , v)dvdx .
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In the second term appear the boundary effects:

−
∫

Ω

w

ε
·
∫
∂tFε(t, x , v)vdv =

∫
Ω

∫
R3

w

ε2
·
∫
∇xFε(t, x , v)v ⊗ vdv =

− 1

ε2

∫
Ω

∫
(v · ∇x)w · vFε(t, x , v)dvdx +

∫
∂Ω

1

ε2

∫
Fε(t, x , v)(w · v)(~n · v)dvdσ.

Since w is tangent to the boundary one has for x ∈ ∂Ω:

1

ε2

∫
Fε(t, x , v)(w · v)(~n · v) =

α(ε)

ε2

∫
Fε(t, x , v)(w · v)(~n · v)+dv =

1√
2π

α(ε)

ε2
Λ(εgε(x , v , t)(w · v)) .
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Therefore one obtains:

1

ε2

d

dt
H(Fε|M(1,εw ,1))(t) +

1

ε4+q
DE(Fε) +

1√
2π

α(ε)

ε3

∫
∂Ω

[
Λ(h(εgε(v)))− h(Λ(εgε(v))))

]
dσ

≤
∫

Ω

∫
(∂tw + w · ∇w)(w − v

ε
)Fε(t, x , v)dxdv −∫

Ω

∫
(w − v

ε
)∇xw(w − v

ε
)Fε(t, x , v)dxdv

+
1√
2π

α(ε)

ε2

∫
∂Ω

Λ(εgε(x , v , t)(w · v))dσ .
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The exotic terms coming from the boundary are

Good
1√
2π

α(ε)

ε3

∫
∂Ω

[
Λ(h(εgε(v)))− h(Λ(εgε(v))))

]
dσ

Bad
1√
2π

α(ε)

ε2

∫
∂Ω

Λ(εgε(x , v , t)(w · v))dσ .

The bad has to be balanced by the good.
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Proposition

∀η > 0∫
∂Ω

Λ(εgε(t, x , v))(w · v))dσ ≤ (
1

η
+
ηC (w)

ε
)

∫
∂Ω

Λ(h(εgε)− h(εΛgε)dσ

+C2η

∫
∂Ω

∫
R3

Fε(v · ~nx)2dvdσ

With η = 2ε

α(ε)

ε2

∫
∂Ω

Λ(εgε(t, x , v))(w · v))dσ

≤ (1 + 2εC (w))
α(ε)

2ε3

∫
∂Ω

Λ(h(εgε)− h(εΛgε)dσ

+C2
α(ε)

ε

∫
∂Ω

∫
R3

Fε(v · ~nx)2dvdσ
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With α(ε)
ε → 0

1

ε2

d

dt
H(Fε|M(1,εw ,1))(t) ≤

∫
Ω

∫
(∂tw + w · ∇w)(w − v

ε
)Fε(t, x , v)dxdv

−
∫

Ω

∫
(w − v

ε
)∇xw(w − v

ε
)Fε(t, x , v)dxdv + o(ε)

Then (cf. Saint Raymond) for

u = lim
ε→0

1

ε

∫
R3
v

vFε(x , v , t)dv

1

2
∂t

∫
Ω
|u(x , t)− w(x , t)|2 +

∫
(u(x , t)− w(x , t)S(w)u(x , t)− w(x , t))dx

≤
∫

(E (x , t), u(x , t)− w(x , t))dx .
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Proof of the Proposition 2 steps

• Symmetry: Λ(Λ(gε)(w · v)) = 0
• Legendre duality between

l(εgε − Λ(εgε)))

= h((εgε − Λ(εgε)) + Λ(εgε))− h(Λ(εgε))− h′(Λ(εgε))(gε − Λ(εgε))

and its Legendre transform:

l∗(p) = (1 + Λ(εgε))(ep − p − 1)

(εgε(t, x , v)− Λ(εgε))(w · v)) =
1

η
(εgε(t, x , v)− Λ(εgε))(ηw · v))

≤ 1

η

(
h((εgε − Λ(εgε)) + Λ(εgε))− h(Λ(εgε))− h′(Λ(εgε))(gε − Λ(εgε))

)

+(1 + Λ(εgε))
(eη|w ||v | − η|w ||v | − 1)

η

Λ(h′(Λ(εgε))(gε − Λ(εgε))) = 0 Proba!

Λ(εgε(t, x , v))(w · v)))≤ 1

η
(Λ(h(εgε))−h((Λ(εgε))+ηC (w)(1+Λ(εgε))
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Step 2

∫
∂Ω

(1 + Λ(εgε)dσ

≤ C1

∫
∂Ω

Λ(h(εgε)− h(εΛgε)dσ + C2

∫
∂Ω

∫
R3

Fε(v · ~nx)2dvdσ

Proof With Gε = Fε/M and c =
∫

(v · ~n)2
+ ∧ 1Mdv

c

∫
∂Ω

(1 + Λ(εgε)dσ =

∫
∂Ω

Λ(Gε)

∫
(v · ~n)2

+ ∧ 1dvM(v)dσx

= I1 + I2∫
∂Ω

∫
R3
v

Λ(Gε)1|Gε/Λ(Gε)−1|>β(v · ~n)2
+ ∧ 1M(v)dσxdv

+∫
∂Ω

∫
R3
v

Λ(Gε)1|Gε/Λ(Gε)−1|≤β(v · ~n)2 ∧ 1M(v)dσxdv
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h(z) = (z + 1) log(z + 1)− z , h(z) ≥ h(|z |) and h is increasing on R+

I1 ≤
1

h(β)

∫
∂Ω

∫
R3
v

Λ(Gε)h

(
|Gε/Λ(Gε)− 1|

)
(v · ~n)2

+ ∧ 1M(v)dσxdv

≤ 1

h(β)

∫
∂Ω

∫
R3
v

Λ(Gε)h

(
Gε/Λ(Gε)− 1

)
(v · ~n)+M(v)dσxdv

≤ 1

h(β)

∫
∂Ω

∫
R3
v

(
Gε log(

Gε
Λ(Gε)

)− Gε + Λ(Gε)

)
(v · ~n)+M(v)dσxdv

=
1

h(β)

∫
∂Ω

Λ(h(εgε)− h(εΛ(gε))dσ
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For I2 with β < 1

|Gε/Λ(Gε)− 1| ≤ β ⇒ (Λ(Gε)) ≤ 1

1− β
Gε

Hence

I2 =

∫
∂Ω

∫
R3
v

Λ(Gε)1|Gε/Λ(Gε)−1|≤β(v · ~n)2 ∧ 1M(v)dσxdv

≤ 1

1− β

∫
∂Ω

∫
R3
v

Gε(v · ~n)2
+ ∧ 1M(v)dσxdv

≤ 1

1− β

∫
∂Ω

∫
R3
v

Fε(v · ~n)2
+dσxdv

Use trace theorems introduced by Mischler!!!
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Remarks

• Proposition With α(ε)
ε → λ <∞ the convergence to zero of the

Darrozes Guiraud entropy implies the convergence to a dissipative solution.

• The Maxwell boundary condition with the hypothesis α(ε)/ε→ 0 which
appears above has been generalized by Golse (2011). The analysis remains
the same confirming the validity of the discussion
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Conclusion

In the presence of boundary that the analogy between the notion of weak
convergence and the statistical theory of turbulence is the most striking. A
series of equivalent criteria for the absence of turbulence. Which at
contrario would define turbulence as a situation where any of this effects is
present:
More precisely there is no turbulence if one of the following effect is
present:
1 No anomalous dissipation of energy.
2 No non trivial Reynolds stress tensor. With a spectra for the
Wigner-measure that may fit some idea of statistical theory of turbulence.
3 No production of the vorticity at the boundary.
4 No production of vorticity in a region of size ν
5 No detachement .
Comparison with the analysis of the convergence from Boltzmann to Euler
confirms the universality of the issues raised by the boundary.
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Thanks for the invitation,

Thanks for listening
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Précédent < RETOUR À L'ALBUM POT POURRI Suivant

Dave à son anniversaire
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Happy Birthday Peter.
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